26 February 2025

Arthur Justin Jarvinen (1956-2010) è stato un compositore americano. Di origine finlandese, era figlio di un pastore luterano ed è cresciuto in Ohio e in Canada. Ha frequentato il California Institute of the Arts, studiando percussioni con John Bergamo, Karen Ervin Pershing e Ruth Underwood. Alla fine, ha studiato composizione con Morton Subotnick, Stephen Mosko ed Earle Brown. Nel 1981, ha conseguito un Master of Fine Arts e ha iniziato a insegnare al California Institute of the Arts, oltre a diventare uno dei membri originali della California Ear Unit.
Jarvinen ha composto oltre 80 composizioni e ha lavorato a stretto contatto sia con Frank Zappa sia con Captain Beefheart.

23 February 2025

La Fairlight è un’azienda di audio digitale con sede a Sydney, in Australia. Nel 1979, ha rilasciato la sua serie I del Cmi, una delle prime Daw con un campionatore audio digitale. Le successive serie Ii e Iii del Cmi presentavano un sequenziatore grafico noto come Page R, in un periodo in cui la maggior parte dei sequenziatori musicali computerizzati richiedeva competenze di programmazione.
Questi strumenti informatici sono stati utilizzati da artisti come Peter Gabriel, Kate Bush e Jean-Michel Jarre. Sono diventati una parte così importante della musica pop degli anni ottanta, che Phil Collins ha incluso il testo, «Su questo disco, non c’è il Fairlight», nelle note di copertina di No Jacket Required.
Da allora, la Fairlight è diventata una produttrice di strumenti multimediali come console di registrazione e missaggio audio digitale.

18 February 2025

E. J. Potter (1941-2012), noto anche come Michigan Madman, è stato un sostenitore delle esibizioni di dragstrip americane. Scrivendo il suo necrologio nel 2012, Paul Vitello del New York Times lo ha descritto come una «leggenda».
Nato a Ithaca, nel Michigan, Elon Jack Potter è cresciuto in una fattoria, riparando motori di trattori, cosa che lo ha portato a costruire motociclette. Al liceo, si chiedeva se avrebbe potuto costruire una moto con un motore V8. La moto che ha costruito, chiamata Bloody Mary, è stata testata su una pista locale e ha raggiunto i 210 chilometri orari.
In seguito, egli ha costruito una motocicletta a tre ruote con il motore di un razzo militare degli Stati Uniti in sovrappiù. La Widowmaker ha stabilito tre record mondiali di velocità su terra. Le altre creazioni di Potter includono l’inserimento di un motore a reazione in un triciclo motorizzato e l’inserimento di motori di aerei della seconda guerra mondiale nei trattori, per le gare di trazione dei trattori.
Subito dopo il diploma di scuola superiore, Potter ha frequentato il circuito delle gare di accelerazione per 13 anni, con le sue creazioni.
Potter è morto per complicazioni del morbo di Alzheimer a Ithaca, nel Michigan, il 30 aprile 2012, all’età di 71 anni.
Nel 2017, la Widowmaker 7 (1971) di Potter è stata messa all’asta a Las Vegas. Nel 2019, le motociclette di Potter sono state presentate in un episodio di American Pickers.

17 February 2025

Ciao.
Ciao.
Che ore sono?
Le 8,48.
Quanti Temi ci sono, nel brano Belo Belo?
Solo due.
Parliamone.
D’accordo.
Il Primo Tema, da quante note è composto?
Novantasei.
Cazzo, è lungo!
Sì…
Quali sarebbero, codeste note?
Non mi va, di scriverle tutte!
Almeno, le prime 16, per favore.
D’accordo: do-do-re bem.-do-re-re bem.-mi bem.-do-mi-re-fa-re bem.-fa diesis-mi bem-sol-do
Si tratta di farina del tuo sacco?
Sì.
E del Secondo Tema, che cosa mi dici?
È stato ricavato da un video surreale, dal titolo Je suis charlie dio cano
Ah! ah! ah! ah! ah! ah! ah! ah! 
Ah! ah! ah! ah! ah!
Ah! ah! ah! 
Ah! ah! 
Ah! 
Ah! 
E le note di dio cano, quali sarebbero?
Sol-mi-re-mi-do-do-si eccetera…
Capisco. Sbaglio o a un certo punto, c’è anche una tuba?
Non sbagli. Quando dio cano diventa «orchestrale» (virgolette obbligatorie, poiché si tratta di un insieme ibrido), entra una tuba, per rinforzare i bassi…
Interessante. Torniamo al Primo Tema. Che tipo di variazioni hai operato, su di esso?
Principalmente ritmiche ma non solo.
Qualche esempio?
Nella sua prima esposizione, esso è in tre quarti e ricalca la figurazione ritmica del classico Kasus Pathos (2021) ma due delle tre voci sono armonizzate in modo parallelo.
Cioè?
Il basso elettrico procede per intervalli di decima minore, mentre il clavicembalo procede per intervalli di seconda maggiore…
Le tue scelte compositive da cosa sono guidate?
Dal piacere.
La seconda esposizione del Primo Tema, come si presenta?
In un’altra «tonalità» o «modalità» o «zona sonora»…
Quale?
Quella di sol.
Che altro?
Il ritmo è totalmente diverso, rispetto alla prima esposizione. Si tratta di una sorta di «ritmo irrazionale» (a dir poco), basato sul mio cognome.
La Coda per pianoforte è molto bella…
Concordo…
Di che si tratta?
Si tratta ancora del Primo Tema ma in la e con un ritmo normalissimo: semicrome su un quattro quarti.
Un po’ come avviene nel primo degli Études op. 10 di Chopin?
Esatto.
A proposito: quando fu pubblicata, l’op. 10?
Nel 1833…
Può bastare.
Concordo.

12 February 2025

La causa per la duodecimalizzazione è stata a lungo portata avanti da F. Emerson Andrews col suo libro del 1935 I nuovi numeri: come l’accettazione di una base duodecimale semplificherebbe la matematica. Emerson notò e fece notare come, a causa della grande diffusione di multipli e fattori di dodici in molte unità di misura tradizionali, molti dei vantaggi di calcolo che l’adozione del Sistema Metrico Decimale vantava avrebbero potuto benissimo essere applicati anche a un sistema in base dozzinale. Fu egli a suggerire l’utilizzo della Chi e della Epsilon minuscole per somiglianza alla X romana e alla E di Eleven, in quanto l’utilizzo quotidiano di A e B similarmente ai sistemi esadecimale e vigesimale, in un testo in alfabeto latino, avrebbe potuto far confondere. Un’altra notazione diffusa è quella introdotta da Sir Isaac Pitman, che suggerì l’utilizzo di un 2 rovesciato per il dieci e lo stesso per il 3, come undici. A sostegno vi è il fatto che, essendo simboli ispirati a cifre già esistenti, sarebbe stato più facile per le masse abituarsi a riconoscerli come veri numeri, piuttosto che simboli artificiali. Per questo, ᘔ e Ɛ sono stati adottati dalla Dozenal Society of Great Britain, che si è battuta per farli inserire tra i caratteri Unicode. Altre proposte sono state asterisco e cancelletto, per il fatto di essere già presenti sulle tastiere dei telefoni ma sono stati criticati per il non avere forme verosimili per essere cifre. Si pensò così a Φ e a +, x o † ma l’uso di questi ultimi tre simboli avrebbe potuto far confondere coi simboli di addizione o moltiplicazione. Un problema con queste cifre, però – sia ᘔ e Ɛ sia le altre varianti – è che non possono essere rappresentate nei famosi display a sette segmenti, oppure possono esservi scritti ma in modo uguale ad altri caratteri. La Dozenal Society of America e la Dozenal Society of Great Britain promuovono l’adozione diffusa del sistema in base 12. Le due associazioni specificano che preferiscono utilizzare la parola dozzinale, anziché duodecimale, poiché quest’ultima mantiene una radice latina con riferimenti a una terminologia decimale, mentre la dozzina indica una tradizionale unità di misura in base dodici – che non prende in considerazione il numero dieci.

09 February 2025

Neil James Alexander Sloane (*1939) è un matematico britannico.
I suoi contributi maggiori sono nel campo della combinatoria, del Forward Error Correction e dell’impacchettamento di sfere. È meglio conosciuto per essere il creatore e mantenitore dell’Oeis.
Studiò alla Cornell University e fu allievo di Nick DeClaris, Frank Rosenblatt, Frederick Jelinek e Wolfgang Heinrich Johannes Fuchs. Ottenne il dottorato nel 1967 e l’anno successivo entrò a far parte dei Bell Laboratories. È membro dell’accademia nazionale di ingegneria.
Nel 1979, gli è stato assegnato il Premio Chauvenet.

08 February 2025

Algorithmic composition is the technique of using algorithms to create music.
Algorithms (or, at the very least, formal sets of rules) have been used to compose music for centuries; the procedures used to plot voice-leading in Western counterpoint, for example, can often be reduced to algorithmic determinacy. The term can be used to describe music-generating techniques that run without ongoing human intervention, for example through the introduction of chance procedures. However through live coding and other interactive interfaces, a fully human-centric approach to algorithmic composition is possible. Some algorithms or data that have no immediate musical relevance are used by composers as creative inspiration for their music. Algorithms such as fractals, L-systems, statistical models, and even arbitrary data (e.g. census figures, Gis coordinates, or magnetic field measurements) have been used as source materials.

Models
Compositional algorithms are usually classified by the specific programming techniques they use. The results of the process can then be divided into: i) music composed by computer; ii) music composed with the aid of computer. Music may be considered composed by computer when the algorithm is able to make choices of its own during the creation process. Another way to sort compositional algorithms is to examine the results of their compositional processes. Algorithms can either: i) provide notational information (sheet music or Midi) for other instruments; ii) provide an independent way of sound synthesis (playing the composition by itself). There are also algorithms creating both notational data and sound synthesis.
One way to categorize compositional algorithms is by their structure and the way of processing data, as seen in this model of six partly overlapping types:
i) mathematical models;
ii) knowledge-based systems;
iii) grammars;
iv) evolutionary methods;
v) systems which learn;
vi) hybrid systems.
Translational models
This is an approach to music synthesis that involves “translating” information from an existing non-musical medium into a new sound. The translation can be either rule-based or stochastic. For example, when translating a picture into sound, a Jpeg image of a horizontal line may be interpreted in sound as a constant pitch, while an upwards-slanted line may be an ascending scale. Oftentimes, the software seeks to extract concepts or metaphors from the medium, (such as height or sentiment) and apply the extracted information to generate songs using the ways music theory typically represents those concepts. Another example is the translation of text into music, which can approach composition by extracting sentiment (positive or negative) from the text using machine learning methods like sentiment analysis and represents that sentiment in terms of chord quality such as minor (sad) or major (happy) chords in the musical output generated. Mathematical models
Mathematical models are based on mathematical equations and random events. The most common way to create compositions through mathematics is stochastic processes. In stochastic models a piece of music is composed as a result of non-deterministic methods. The compositional process is only partially controlled by the composer by weighting the possibilities of random events. Prominent examples of stochastic algorithms are Markov chains and various uses of Gaussian distributions. Stochastic algorithms are often used together with other algorithms in various decision-making processes.
Music has also been composed through natural phenomena. These chaotic models create compositions from the harmonic and inharmonic phenomena of nature. For example, since the 1970s fractals have been studied also as models for algorithmic composition.
As an example of deterministic compositions through mathematical models, the On-Line Encyclopedia of Integer Sequences provides an option to play an integer sequence as 12-tone equal temperament music. (It is initially set to convert each integer to a note on an 88-key musical keyboard by computing the integer modulo 88, at a steady rhythm. Thus 123456, the natural numbers, equals half of a chromatic scale.) As another example, the all-interval series has been used for computer-aided composition.
Knowledge-based systems
One way to create compositions is to isolate the aesthetic code of a certain musical genre and use this code to create new similar compositions. Knowledge-based systems are based on a pre-made set of arguments that can be used to compose new works of the same style or genre. Usually this is accomplished by a set of tests or rules requiring fulfillment for the composition to be complete.

Grammars
Music can also be examined as a language with a distinctive grammar set. Compositions are created by first constructing a musical grammar, which is then used to create comprehensible musical pieces. Grammars often include rules for macro-level composing, for instance harmonies and rhythm, rather than single notes.

Optimization approaches
When generating well defined styles, music can be seen as a combinatorial optimization problem, whereby the aim is to find the right combination of notes such that the objective function is minimized. This objective function typically contains rules of a particular style, but could be learned using machine learning methods such as Markov models. Researchers have generated music using a myriad of different optimization methods, including integer programming, variable neighbourhood search, and evolutionary methods.
Evolutionary methods
Evolutionary methods of composing music are based on genetic algorithms. The composition is being built by the means of evolutionary process. Through mutation and natural selection, different solutions evolve towards a suitable musical piece. Iterative action of the algorithm cuts out bad solutions and creates new ones from those surviving the process. The results of the process are supervised by the critic, a vital part of the algorithm controlling the quality of created compositions.

Evo-Devo approach
Evolutionary methods, combined with developmental processes, constitute the evo-devo approach for generation and optimization of complex structures. These methods have also been applied to music composition, where the musical structure is obtained by an iterative process that transform a very simple composition (made of a few notes) into a complex fully-fledged piece (be it a score, or a Midi file).
Systems that learn
Learning systems are programs that have no given knowledge of the genre of music they are working with. Instead, they collect the learning material by themselves from the example material supplied by the user or programmer. The material is then processed into a piece of music similar to the example material. This method of algorithmic composition is strongly linked to algorithmic modeling of style, machine improvisation, and such studies as cognitive science and the study of neural networks. Assayag and Dubnov proposed a variable length Markov model to learn motif and phrase continuations of different length. Marchini and Purwins presented a system that learns the structure of an audio recording of a rhythmical percussion fragment using unsupervised clustering and variable length Markov chains and that synthesizes musical variations from it.
Hybrid systems Programs based on a single algorithmic model rarely succeed in creating aesthetically satisfying results. For that reason, algorithms of different type are often used together to combine the strengths and diminish the weaknesses of these algorithms. Creating hybrid systems for music composition has opened up the field of algorithmic composition and created also many brand new ways to construct compositions algorithmically. The only major problem with hybrid systems is their growing complexity and the need of resources to combine and test these algorithms. Another approach, which can be called computer-assisted composition, is to algorithmically create certain structures for finally “hand-made” compositions. As early as in the 1960s, Gottfried Michael Koenig developed computer programs Project 1 and Project 2 for aleatoric music, the output of which was sensibly structured “manually” by means of performance instructions. In the 2000s, Andranik Tangian developed a computer algorithm to determine the time event structures for rhythmic canons and rhythmic fugues, which were then worked out into harmonic compositions Eine kleine Mathmusik I and Eine kleine Mathmusik Ii.

04 February 2025

Vivobarefoot is a minimalist running shoe company. Their technology, invented by Tim Brennan and developed by British shoe company Terra Plana, is aimed at offering the optimum biomechanics and posture commonly associated with walking barefoot and barefoot running, and advocated within the barefoot movement and barefoot running community. Their marketing describes the walking experience as “as close to going barefoot in the city as you can get.” In 2019, the most prominent shoe using this technology was their Evo running shoe.
In 2022, Vivobarefoot sold 773,000 pairs of shoes.

03 February 2025

L’hoquetus è una tecnica compositiva utilizzata per la prima volta nel tardo mottetto del Xiii secolo.
Questa tecnica si sviluppò soprattutto in Francia, presso la Scuola di Notre-Dame durante l’Ars Antiqua ma fu utilizzata anche successivamente da compositori quali Guillaume de Machaut nel periodo dell’Ars Nova. Si tratta di interruzioni brevi e frequenti della linea melodica, ottenute per mezzo di pause alternate tra le varie voci che costituiscono un brano polifonico, restituendo in questo modo una sorta di «effetto singhiozzo» all’ascolto. Lo stile dell’hoquetus appartiene in realtà a molte culture musicali extraeuropee. Esempi dell’uso di questa tecnica – intesa come l’intreccio tra le parti, ognuna delle quali completa l’altra nel creare una melodia integrata – sono presenti nelle tradizioni delle popolazioni indigene di Nuova Guinea, isole Salomone, Indonesia, Filippine, Vietnam e in alcune enclaves in Asia sudorientale e Cina. Si tratta di tutte quelle parti del mondo che costituiscono la rotta seguita dalle migrazioni dei primi esseri umani fuori dall’Africa, continente in cui troviamo i primi esempi di hoquetus nelle musiche indigene di pigmei e boscimani. La similitudine di tecniche e strumenti utilizzati ha portato a concludere che l’hoquetus sia stato tramandato da quella ipotetica popolazione di base da cui tutti gli esseri umani hanno origine.

02 February 2025

ChatGpt è un robot di conversazione basato sull’intelligenza artificiale e sull’apprendimento automatico, sviluppato dalla OpenAi e specializzato nella conversazione con un utente umano: ha mostrato notevoli capacità nel generare un testo simile a quello usato dalle persone, tanto da superare con ottimi risultati la prova di Turing.
ChatGpt è un modello di linguaggio sviluppato dalla OpenAi e messo a punto con tecniche di apprendimento automatico e ottimizzato con tecniche di apprendimento supervisionato e per rinforzo, elaborato per essere utilizzato come base per la creazione di altri modelli di apprendimento automatico. È stato addestrato a partire dai modelli Instruct Gpt o Gpt-3.5 della OpenAi, che sono l’evoluzione dei modelli di Gpt-3. Negli Instruct Gpt, il pre-addestramento era stato ottimizzato manualmente da addestratori umani. Nello specifico, ChatGpt si sviluppa da un Gpt-3.5, utilizzando l’apprendimento supervisionato e per rinforzo. Il 14 marzo 2023, è stata annunciata l’introduzione di Gpt-4, un modello multimodale su larga scala che può accettare input di immagini, video, audio e testo e produrre output di testo. ChatGpt è stato lanciato il 30 novembre 2022 e ha attirato l’attenzione per le sue risposte dettagliate e articolate, anche se la sua accuratezza è stata criticata. Sia l’apprendimento supervisionato sia quello per rinforzo si sono serviti di istruttori umani, per migliorarne le prestazioni: nella prima fase, il modello è stato alimentato con conversazioni nelle quali gli istruttori interpretavano entrambe le parti; nella fase di rinforzo, gli istruttori umani hanno prima valutato le risposte che il modello aveva dato nella conversazione precedente e poi hanno usato queste valutazioni per creare «modelli di ricompensa» sui quali il modello è stato perfezionato, utilizzando diverse iterazioni di Proximal Policy Optimization. Gli algoritmi di Ppo presentano un vantaggio sugli algoritmi di Trust Region Policy Optimization, annullando molte operazioni computazionalmente costose, con prestazioni migliori. I modelli sono stati addestrati in collaborazione con la Microsoft, sulla sua infrastruttura cloud Azure. Nel maggio del 2023, la OpenAi ha reso ChatGpt disponibile per iOs sull’App Store, nel luglio del 2023, per la versione Android sul Play Store.

Nel 1999, Arved Ashby ha cercato di dimostrare come Zappa smontasse gli ideali musicali e sociali in rapporto all’orchestra. Ciò si otteneva...